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A B S T R A C T   

In identifying the print colors of words when some combinations of color and word occur more frequently than 
others, people quickly show evidence of learning these associations. This contingency learning effect is evident in 
faster and more accurate responses to high-contingency combinations than to low-contingency combinations. 
Across four experiments, we systematically varied the number of response-irrelevant word stimuli connected to 
response-relevant colors. In each experiment, one group experienced the typical contingency learning paradigm 
with three colors linked to three words; other groups saw more words (six or twelve) linked to the same three 
colors. All four experiments disconfirmed a central prediction derived from the Parallel Episodic Processing (PEP 
2.0) model (Schmidt et al., 2016)—that the magnitude of the contingency learning effect should remain stable as 
more words are added to the response-irrelevant dimension, as long as the color-word contingency ratios are 
maintained. Responses to high-contingency items did slow down numerically as the number of words increased 
between groups, consistent with the prediction from PEP 2.0, but these changes were unreliable. Inconsistent 
with PEP 2.0, however, overall response time did not slow down and responses to low-contingency items actually 
sped up as the number of words increased across groups. These findings suggest that the PEP 2.0 model should be 
modified to incorporate response interference caused by high-probability associations when responding to low- 
probability combinations.   

Associative learning may well be the cornerstone of all learning. 
Connecting two entities, whether two stimuli, two responses, a stimulus 
and a response, or a variety of other combinations (e.g., a stimulus and 
its context, two dimensions of a single stimulus or event) routinely un
derpins more extensive learning. Such learning is at the core of both 
classical and operant conditioning and has been investigated in many 
animal species. In their review, Le Pelley et al. (2016) argued that, in 
human associative learning, attention is biased toward highly predictive 
stimuli even when their processing is considered to be automatic, and 
that this bias is greater the more predictive a stimulus is of some 
outcome (also see Mackintosh, 1975). 

One situation where associative learning is readily studied in humans 
is contingency learning—learning from a statistical correlation between 
two entities that each predicts the other. Such a correlation can speed 
responding, make responding more accurate, and even influence stim
ulus evaluation and judgments of causality. It can also happen extremely 
quickly (Lewicki, 1985), suggestive of ‘preparedness’ to learn such 
connections (Seligman, 1970). Often, consistent with the idea of pre
diction as expectation, human contingency learning has been investi
gated in sequential circumstances, where a prior stimulus predicts a 

subsequent stimulus (see, e.g., Shanks, 2007). But it can also be studied 
in simultaneous circumstances where one stimulus—or one dimension 
of a stimulus—is correlated with another co-occurring stimulus or 
dimension. Here, one of the stimuli or dimensions is response-relevant 
whereas the other is response-irrelevant, allowing for investigation of 
contingency influences that can be less obvious to the participant than is 
often the case with successive relations. 

A paradigm that provides a very simple way to investigate human 
contingency learning is the color-word contingency paradigm intro
duced by Schmidt et al. (2007). In this situation, a combined color-word 
stimulus is presented on each trial, with the color dictating the response 
and the word being response-irrelevant. That is, in the typical color- 
word contingency paradigm, participants are told to respond as 
quickly and as accurately as they can to the print color of each word. 
Typically, only three colors and three words are used (e.g., the colors 
red, yellow, and green, and the words mouth, under, and plate). The 
contingency manipulation resides in the assignment of each word 
preferentially to one of the colors such that, for example, mouth appears 
80% of the time in red and only 10 % of the time in each of the other two 
colors. In this example, mouth in red is a high-contingency item and 
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mouth in yellow or in green is a low-contingency item. Here, we will 
refer to these respectively as the HI and LO conditions. Very quickly, 
participants show faster (and more accurate) responding on HI trials 
than on LO trials, and this is true whether a participant is or is not aware 
of the contingency, although the difference is enhanced by awareness 
(Schmidt, De Houwer, 2012a, 2012b). The effect is robust and stable, 
and there is now a considerable literature exploring this simple situation 
(for reviews, see MacLeod, 2019; Schmidt, 2021). 

In 2013, Schmidt introduced a model intended to capture this type of 
simple learning. His initial Parallel Episodic Processing (PEP) model has 
since been updated to PEP 2.0 by Schmidt et al. (2016; see also Schmidt, 
2018). The model assumes that as individual trials occur in an experi
ment, they are stored in episodic memory and then are routinely 
retrieved on subsequent trials, influencing how those subsequent trials 
are handled. PEP 2.0 is a thus member of the class of instance theories of 
learning (e.g., Logan, 1988), although in PEP 2.0 instances are recovered 
simultaneously rather than there being a ‘race’ among instances. On 
each trial—with a trial stored as an episode—both the relevant (e.g., the 
font color) and the irrelevant (e.g., the word) elements are encoded, 
along with the response made (e.g., pressing a particular response key). 
On any given trial, more recently experienced instances exert more in
fluence on processing than do less recently experienced instances. 

Applied to the color-word contingency learning paradigm, PEP 2.0 
handles the basic contingency learning effect by predicting a benefit for 
the HI trials. Using our example, because mouth has most often been seen 
in red previously (i.e., 80% of the time), when the current trial contains 
mouth, there will be more retrieved instances in memory that point to 
mouth in red than to mouth in another color. If indeed the current trial is 
mouth in its high-contingency color (red), PEP 2.0 predicts that the red 
response will be facilitated due to many past episodes biasing the 
response decision in favor of the high-contingency color. If the current 
trial is mouth in any other (low-contingency) color, PEP 2.0 suggests that 
the scarcity of matching instances in memory will lead to a weaker 
response bias toward those colors, resulting in a slower response deci
sion than would occur on a HI trial. The result is a positive LO - HI 
difference both in latency and in accuracy of responses that Schmidt 
et al. (2016, p. 84) refer to as the “contingency learning benefit.” More 
neutrally, we call this difference the contingency learning effect. 

1. Costs for LOs in contingency learning 

In the same year that their PEP 2.0 model became available, Schmidt 
and De Houwer (2016) also published an article that considered evi
dence of four main accounts to explain the contingency learning effect: 
(1) prediction benefit, (2) misprediction cost, (3) bidirectional cost, and 
(4) pure proportion. The prediction benefit account posits that a par
ticipant's expectations would ready a particular color response when a 
high contingency word was presented, leading to facilitation on HI tri
als. The misprediction cost account says that not only will HI trials be 
facilitated, as in the prediction benefit account, but that there will also 
be a cost to inaccurately predicting a response given a low-contingency 
word (that is, responses on LO trials will be slowed due to having to 
overcome the incorrect prepared response). The bidirectional account is 
largely the same as the misprediction account except that it additionally 
assumes that colors can be predictive of words as well, and therefore 
when presented with a color that is usually highly predictive of a 
different word, responses to the low-contingency words will be slowed. 
Finally, the pure proportion account suggests that all HI and LO re
sponses are facilitated to some degree, but the extent to which this oc
curs depends on the proportions of these trials in what has gone before 
(therefore, HI trials are more facilitated due to their higher prominence 
in the set). 

Critically, of these four accounts, only the middle two (misprediction 
cost and bidirectional cost) posit a cost for LO trials. The other two ac
counts (prediction benefit and pure proportion) cast the contingency 
learning benefit as entirely facilitative. Schmidt's PEP 2.0 account aligns 

with the pure proportion account, suggesting that there is no cost to LO 
trials, only less facilitation. Yet several studies have reported costs to LO 
trials when compared with neutral baselines that have no contingency, 
including two examples from the MacLeod laboratory (Forrin & 
MacLeod, 2018; Lin & MacLeod, 2018) and one from the Schmidt lab
oratory (Schmidt & De Houwer, 2016, Experiment 1). In a 2021 review, 
however, Schmidt argues that investigations of medium contingency 
trials have revealed that participants do not exhibit response biases 
dependent on response expectations. The field is therefore undecided as 
to whether costs for LO trials are due to response interference (or ‘response 
competition’, as the misprediction and bidirectional cost accounts would 
predict), or if instead there is retrieval interference (as Schmidt & De 
Houwer, 2016 refer to it) driving less facilitation for LO trials owing to 
their scarcity (as the pure proportion account and PEP 2.0 model would 
predict). Here, we aim to resolve this debate by implementing a variant 
of the color-word learning paradigm. 

2. The present investigation 

Previous studies of contingency learning have ordinarily been 
restricted to a single word having a high contingency association to each 
color; typically, each of three words to one of three colors. In our 
example, only mouth was presented 80% of the time in red, and each of 
the other two words were presented 80% of the time in only one of the 
two remaining colors (e.g., under in yellow and plate in green). But what 
would happen if more response-irrelevant words were added to the set 
without changing contingency proportions? That is, what would occur if 
there was a second word that was also highly contingent with the color 
red? 

In the present experiment, instead of changing the contingency ratio 
as others have (e.g., Forrin & MacLeod, 2018), we introduced the 
manipulation of more than one word ‘sharing’ a given color, each of the 
shared words having high contingency to that color. Importantly, the 
manipulation used here added more HI trials without altering the pro
portion of LO trials (unlike what happens when the contingency ratio 
itself is changed). 

A straightforward prediction from PEP 2.0 and the pure proportion 
account is that the contingency learning effect should remain the same 
because the proportion of instances in memory would still favor HI tri
als, leading to facilitation for HIs and little to no facilitation for LOs. Of 
course, the addition of more trials would mean that all responses should 
receive less facilitation when compared to the standard 3-word, 3-colors 
paradigm. In other words, there should be slower responses overall, but 
HI trials should still be faster than LO trials on average, leading to a 
contingency learning effect of consistent magnitude. A related account 
to the pure proportion account that is concerned instead with trial fre
quency (the pure frequency account; Schmidt & De Houwer, 2016) 
suggests that HI trials are facilitated not because they represent a higher 
proportion of trials but because there are more of them in general 
(referring to their raw trial count). This pure frequency account also 
predicts that the contingency learning effect should remain the same size 
as both HI and LO trials become scarcer in memory. 

In our first experiment, we compared a 6-word condition to the 
typical 3-word condition. In subsequent experiments, we also included a 
12-word condition to provide an extended test of the prediction. The 
purpose of this study was to directly test whether Schmidt's PEP 2.0 
model and the pure proportion/pure frequency accounts can predict 
contingency learning beyond the conventional three words, three colors 
paradigm. We predicted that the contingency learning effect should be 
stable as word set size increases because both HI and LO instances 
matching the current trial should become equally scarce. In other words, 
the size of the contingency learning effect should not change when more 
response-irrelevant words are added to the study set if the typical 8:1:1 
(HI:LO:LO) contingency ratio is maintained for each word, but responses 
on both HI and LO trials should become slower overall as matches to 
prior experiences become rarer. 
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3. Experiment 1 

In this first experiment, we manipulated the number of words highly 
contingent with any given color—from the standard one word per color 
(3 words total) to two words per color (6 words total). Under PEP 
2.0—and the pure proportion/pure frequency accounts more general
ly—the contingency learning effect was expected to remain the same 
size but overall response times were expected to slow. 

3.1. Method 

3.1.1. Participants 
We collected a sample size that roughly matched or exceeded that of 

previous contingency learning studies.1 A power sensitivity analysis is 
presented below in the Outlier Removal section. During the first aca
demic term of 2018, 100 University of Waterloo undergraduate students 
took part in a single session in exchange for course credit. All had self- 
reported normal or corrected-to-normal vision. After data trimming, 
the final sample of 98 participants used in our statistical analyses was 
83% female, with age ranging from 18 to 32 (M = 20.04, SD = 2.22). 
Due to missing or incomplete demographic data for some participants, 
these two figures are based on 77 and 90 participants, respectively. 

3.1.2. Apparatus 
The task was programmed using E-Prime 3.0 software (E-Prime, 

2016). Stimulus presentation was controlled by a Windows-based 
computer with a 24″ color monitor set to 1920 × 1080 resolution. Re
sponses were collected using a standard QWERTY keyboard. 

3.1.3. Materials and design 
The master list of six English words (mouth, under, plate, bench, clock, 

and dream) was made up of common high-frequency words (SUBTLEX- 
US Zipf scores ≥4; Brysbaert et al., 2019), each containing five letters. 
This list was randomized anew for each participant, with either a 
random 3 or all 6 words used, depending on condition. Word-to-color 
contingencies were also randomized across participants. 

Using a 2 × 2 mixed design, the within-subject factor was contin
gency (HI vs. LO) and the between-subjects factor was number of words 
(3 vs. 6). Participants were randomly assigned to one of two between- 
subjects conditions, resulting in 50 participants per group. Participants 
in each group completed 600 trials, with each word appearing in one 
color 80% of the time (high contingency), and in each of the other two 
colors 10% of the time (low contingency; see Fig. 1). The only difference 
between the groups was that in the 6-word condition two words had a 
high-contingency connection to each color whereas in the 3-word con
dition only one word had a high-contingency connection to each color. 

3.1.4. Procedure 
Upon arrival (and after informed consent), participants saw on- 

screen instructions for the task and were asked after reading these in
structions whether any clarification was required before proceeding 
directly to the trials. They were informed that on each trial a word would 
appear in the center of the screen in one of three colors, and that they 
were to press the key on the keyboard that corresponded to the color as 
quickly and accurately as possible. The keys—J = red, K = yellow, and L 
= green—had corresponding solid-colored stickers on them, resulting in 

key-to-color assignment being constant across participants. 
After receiving a standard set of instructions read aloud by the 

experimenter, trials began immediately. Each trial began with a fixation 
cross (+) for 150 ms at the center of the screen, followed by a 150-ms 
blank screen. Then a word was presented in color in the center of the 
screen for a maximum of 2000 ms or until a response key was pressed. 
Stimulus words were presented in 18-pt Consolas lowercase font in one 
of the three colors (red, yellow, or green). Correct responses were fol
lowed immediately by the next trial; incorrect responses or 2000-ms 
timeouts led to a feedback screen displaying “XXX” for 500 ms before 
the next trial (as is standard procedure in this literature; see Schmidt 
et al., 2007, 2018). On all screens, a black background was used; in
structions were presented in white font. 

After all 600 trials were completed, and as has been standard practice 
in the color-word contingency learning literature (e.g., Schmidt et al., 
2007; Schmidt & De Houwer, 2012c), participants were asked two 
questions to determine the extent of their awareness of the color-word 
relations. The first question was subjective and inquired about their 
awareness of the color-word congruency: “In this experiment, each word 
was presented most often in a specific color. Specifically, each word was 
presented mostly in either red, yellow, or green. Did you notice these 
relations? [Response options of YES or NO].”2 The second question was 
objective: “In what color was the word [stimulus word] usually pre
sented?” Each of the stimulus words was then presented one at a time in 
white font in a random order and the participant was to identify the 
high-contingency color associated with the word by pressing the cor
responding color key. Following these questions, participants were 
debriefed verbally and with a written letter. 

3.1.5. Outlier removal 
To ensure accurate representation of average responses times and 

error rates, we subjected the data set to five cleaning steps that stem 
from a combination of procedures often used in prior research on con
tingency learning (Geukes et al., 2019; Schmidt, 2016; Schmidt et al., 
2007, 2010) and in other RT-based work (e.g., Besner, McLean, Young, 
2021a, 2021b). First, participants with corrupt data or ≥ 20% of trial 
missing were removed. Second, if a participant's overall error rate was 
≥20%, that file was removed. Third, we removed any trials that were 
either anticipations (i.e., < 200 ms) or timeouts (i.e., exceeded the 2000- 
ms response deadline). [Afterward, we removed any participant who 
now had <80 % of trials remaining.] Fourth, only for correct responses, 
we removed any trials that were statistical outliers based on response 
time (i.e., ± 3 SDs away from the mean), as calculated separately for HI 
trials and LO trials within each participant. [Then, we once again 
removed any participant who now had <80% of trials remaining.] Fifth, 
we excluded participants whose mean response time or error rate 
(collapsed across HI and LO trials) was ±3 SDs away from the overall 
mean response time or error rate in their group. Each data cleaning step 
was performed using R; the syntax used for this process can be found on 
OSF (see the Transparency and Openness section below). Appendix 
Table 1 shows the small amount of data trimmed as a result of each data 
cleaning step. 

In Experiment 1, we retained data from 98 of the 100 participants in 
our statistical analyses. A power sensitivity analysis using the jpower 
module (v. 0.1.2; Morey & Selker, 2020) for jamovi (v. 2.2.5; Şahin & 
Aybek, 2019) indicated that, with our final sample size of N = 98, we 
were powered to detect between-subjects effect sizes in independent 
samples t-tests as small as d = 0.57 (f = .29, ηp

2 = .08) and within-subject 
effect sizes in paired-samples t-tests as small as d = 0.40 (f = .20, ηp

2 =

.04), both with 80% power (α = .05, two-tailed). 
1 In each experiment, we used convenience sampling of undergraduate par

ticipants enrolled in psychology courses. As a result, our participants tended to 
be young, college educated women. This population matches that of much of 
the previous work on contingency learning, allowing for closer comparison to 
previous findings. Although we had no a priori reasons to believe that culture, 
language, race, or sex would affect the low-level cognitive processes thought to 
underlie contingency learning, the homogeneity of our sample necessarily 
limits the generalizability of any conclusions. 

2 Due to a programming error, responses to the subjective awareness question 
were not recorded in Experiments 1 and 3. 
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3.1.6. Transparency and openness 
The procedures and materials for this study were approved by the 

Office of Research Ethics at the University of Waterloo (projects #30188 
& #41523). Although this study was not pre-registered, all program 
files, data, and statistical analysis code are posted on the Open Science 
Framework (OSF; https://osf.io/4x9v8/). Data cleaning and statistical 
analyses were performed using R (v. 4.1.1; R Core Team, 2020), 
enlisting the afex (v. 1.1–1; Singmann et al., 2022), emmeans (v. 1.8.1–1; 
Lenth et al., 2022), and trend (v. 1.1.4; Pohlert, 2020) packages. We 
report our rationale for sample size determinations, data exclusion steps 
and results, and all manipulations and measures in the study (in 
accordance with JARS; Kazak, 2018). 

3.2. Results 

For each experiment, a table presents descriptive statistics for both 

response time and error rate. In general, the error rate results were 
consistent with the response time results: Faster response times were 
associated with lower error rates, indicating no speed-accuracy trade- 
off. We focus on the response time inferential statistics in the main text, 
reporting the corresponding error rate inferential statistics in the Ap
pendix. We also include in the Appendix the results concerning partic
ipants' subjective and objective awareness of the color-word 
contingencies. 

The top half of Table 1 displays mean correct response times for HI 
and LO trials separately for the 3-word and 6-word groups. Before 
analyzing response time data, all error trials were removed (see Ap
pendix Table 1 for error analyses). A 2 × 2 mixed analysis of variance 
(ANOVA)3 was conducted with Contingency (HI vs. LO) as the within- 
subject factor, Group (3-word vs. 6-word) as the between-subjects fac
tor, and response time (in ms) as the dependent measure. As expected, 
there was a significant main effect of Contingency, F(1, 96) = 124.12, p 
< .001, ηp

2 = .56, BF10 > 100, indicative of a robust overall contingency 
learning benefit. The main effect of Group was non-significant, F(1, 96) 
< 0.01, p = .982, ηp

2 < .01, BF01 = 2.61, with the Bayesian evidence for 
the null model being only anecdotal. The Contingency x Group inter
action was non-significant, F(1, 96) = 3.47, p = .066, ηp

2 = .04, BF01 =

1.03. Consistent with our prediction, the contingency learning effect 
although numerically larger for the 3-word group (43 ms) than for the 6- 
word group (31 ms) was not significantly so. Because of our a priori 
hypotheses, we then conducted planned comparisons confirming sig
nificant contingency learning effects both in the 3-word group, t(96) =
9.10, p < .001, d = 1.12, BF10 > 100, and in the 6-word group, t(96) =
6.63, p < .001, d = 1.17, BF10 > 100 (see Fig. 2). 

Next, because we also reasoned a priori that response times on HI and 
LO trials might differ between groups, we broke down the Contingency x 
Group interaction. Planned comparisons revealed that responses to HIs 
were non-significantly different between groups, t(96) = 0.49, p = .628, 

Fig. 1. Distribution of words connected to a single color (in this example, red) for each condition. 
Note. The ratio of HI:LO:LO for each word is 8:1:1 across all color-word combinations. In Experiments 2–4, words were presented in uppercase. 

Table 1 
Experiment 1: response time and error rate.  

Group HI LO CL effect 

Response times 
3-word 543 (60) 586 (78) 43 (39) 
6-word 549 (72) 580 (80) 31 (26) 

Error rates 
3-word .034 (.023) .062 (.046) .029 (.036) 
6-word .038 (.024) .059 (.053) .021 (.045) 

Note. This table reports mean response time (in ms) and mean error rate (with 
standard deviations for each in parentheses) for high-contingency (HI) and low- 
contingency (LO) trials, and the mean contingency-learning (CL) effect (low 
contingency – high contingency) in the two experimental groups. 

3 Throughout this article, Bayes factors were calculated using the BayesFactor 
(Morey & Selker, 2020) package for R, enlisting a default Jeffreys-Zellner-Siow 
(JZS) prior with a Cauchy distribution (center = 0, r = .707). This package 
compares the fit of various linear models. In the present case, Bayes factors for 
the alternative (BF10) are in comparison to intercept-only models containing 
subject-level error, or to models containing subject-level error and both main 
effect terms in the case of Bayesian analyses of 2 × 2 interactions. Bayes factor 
interpretations follow the conventions of Lee and Wagenmakers (2013). Bayes 
factors in favor of the alternative (BF10) or null (BF01) models are presented in 
accordance with each preceding report of NHST analyses (i.e., based on a p <
.05 criterion). 
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d = 0.10, BF01 = 4.23, and that this was also true for LOs, t(96) = 0.37, p 
= .713, d = 0.08, BF01 = 4.42, with moderate Bayesian evidence for the 
null in each case. 

3.3. Discussion 

There are three principal results of interest. First, we replicated the 
basic contingency learning effect in the 3-word group—the version used 
in most prior studies. Second, despite the effect still being present in the 
6-word group and not significantly different from that in the 3-word 
group, the effect size was numerically attenuated, which is counter to 
expectations from the pure proportion/pure frequency accounts. Third, 
and again inconsistent with these two accounts, we observed no overall 
slowing in moving from 3 to 6 words.4 

In sum, our findings are inconsistent with predictions from pure 
proportion/pure frequency accounts, including the PEP 2.0 model. 
There was a numerical reduction in contingency learning effect size but 
with no overall slowing observed. Moreover, the LO trials seemed to 
speed up, a pattern not predicted by the pure proportion/pure frequency 
accounts. The following experiments explored these patterns further. 

4. Experiment 2 

The principal goal of Experiment 2 was to conceptually replicate and 
extend this ‘shared associations’ manipulation to further investigate 
whether contingency learning effect size would be altered as the number 
of stimuli on the response-irrelevant dimension increased. Therefore, 
there were again two groups, this time differing in whether they were 
presented with 3 words or 12 words in total. Based on the pure pro
portion/pure frequency accounts, we again expected general slowing of 
both HI and LO responses and a constant contingency learning effect. 

4.1. Method 

4.1.1. Participants 
We again collected a sample size that roughly matched or exceeded 

that of previous contingency learning studies. A power sensitivity 
analysis is presented below in the Outlier Removal section. Our data 
collection stopping rule was based on the end of the academic term. 
During the final academic term of 2019, 166 University of Waterloo 
undergraduate students took part in a single session in exchange for 

course credit. All participants had self-reported normal or corrected-to- 
normal vision. After data trimming, the final participant sample of 163 
participants used in our statistical analyses was 82% female, with age 
ranging from 17 to 27 (M = 19.55, SD = 1.81). Due to missing or 
incomplete data for four participants, the latter demographic figure is 
based on 159 participants. 

4.1.2. Apparatus 
The apparatus was identical to that in Experiment 1. 

4.1.3. Materials and design 
Participants were randomly assigned to condition, with 85 in the 3- 

word group and 81 in the 12-word group. The overall design followed 
that of Experiment 1 except that the word set was replaced by 12 new 
words. These new words were selected from the MRC psycholinguistic 
database (Coltheart, 1981): child, earth, floor, glass, heart, board, house, 
mouth, blood, staff, plant, and teeth. All were concrete (>400), high fre
quency (Kučera-Francis written frequency, also known as K-F-FREQ 
>90; Kučera & Francis, 1967), monosyllabic words five letters in length. 
As in Experiment 1, words were presented in an 8:1:1 (HI:LO:LO) ratio 
(see Fig. 1). This yielded a 2 (HI vs. LO contingency) x 2 (3 vs. 12 words) 
design, with contingency manipulated within-subject and number of 
words manipulated between-subjects. 

4.1.4. Procedure 
The procedure followed that of Experiment 1, except that words were 

now presented in uppercase. For the new 12-word condition, four words 
shared a high-contingency connection to each color (four times as many 
as standard; see Fig. 1). 

4.1.5. Outlier removal 
The data cleaning procedure was as described in Experiment 1. Ap

pendix Table 1 lists the results of all data cleaning steps and shows the 
small amount of data trimmed. In the end, data from 163 of the 166 
participants were used for our statistical analyses. A power sensitivity 
analysis using the jpower module for jamovi indicated that we were 
powered to detect between-subjects effect sizes in independent samples 
t-tests as small as d = 0.44 (f = .22, ηp

2 = .05) and within-subject effect 
sizes in paired-samples t-tests as small as d = 0.31 (f = .16, ηp

2 = .02), 
both with 80% power (α = .05, two-tailed). 

4.2. Results 

The top half of Table 2 displays mean response time for correct re
sponses on HI and LO trials in each group. A 2 × 2 mixed ANOVA was 
conducted, with Contingency (HI vs. LO) as the within-subject factor, 
Group (3-word vs. 12-word) as the between-subjects factor, and 
response time (in ms) as the dependent measure. As in Experiment 1, 
there was a significant main effect of Contingency, F(1, 161) = 185.73, p 
< .001, ηp

2 = .54, BF10 > 100, but not of Group, F(1, 161) = 0.16, p =
.693, ηp

2 < .01, BF01 = 2.31, although the Bayesian evidence only 
reached anecdotal levels in the latter case. This time, however, the 

Fig. 2. Magnitude of the contingency learning effect in all four experiments. 
Note. Error bars = ± 1 SE. 

Table 2 
Experiment 2: response time and error rate.  

Group HI LO CL Effect 

Response times 
3-word 540 (74) 579 (87) 39 (31) 
12-word 547 (79) 561 (82) 14 (18) 

Error rates 
3-word .029 (.023) .060 (.041) .031 (.033) 
12-word .042 (.030) .053 (.039) .011 (.025) 

Note. This table reports mean response time (in ms) and mean error rate (with 
standard deviations for each in parentheses) for high-contingency (HI) and low- 
contingency (LO) trials, and the mean contingency-learning (CL) effect (low 
contingency – high contingency) in the two experimental groups. 

4 We were, however, underpowered to reliably detect such effects if they 
were smaller than d = 0.57; see our power sensitivity analysis above. 
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Contingency x Group interaction was statistically significant, F(1, 161) 
= 41.62, p < .001, ηp

2 = .21, BF10 > 100: The contingency learning effect 
(LO – HI) was significantly larger for the 3-word group (39 ms). The 
effect was, however, statistically significant both in the 3-word group, t 
(161) = 14.33, p < .001, d = 1.30, BF10 > 100, and in the 12-word group, 
t(161) = 5.03, p < .001, d = 0.79, BF10 > 100. Planned comparisons 
showed that responses to HIs, t(161) = 0.65, p = .517, d = 0.10, BF01 =

4.23, and to LOs, t(161) = 1.33, p = .186, d = 0.21, BF01 = 4.86, were 
non-significantly different between groups (with moderate Bayesian 
evidence for the null model in each case). 

4.3. Discussion 

Experiment 2 conceptually replicated and extended the pattern 
observed in Experiment 1. As the number of words increased, the 
magnitude of the contingency learning effect diminished, contrary to the 
prediction of pure proportion/pure frequency accounts. We once again 
observed that the movement in group performance appeared to be 
mainly in the LOs becoming faster as more words were added (a statis
tically non-significant difference also apparent in Experiment 1). 

Recall that the pure proportion/pure frequency accounts both pre
dict that the HI trials should get slower as more words are associated 
with each color because there is a decrease in the frequency of instance 
episodes for both trial types while contingency ratios are maintained. 
Here, however, there was a 7 ms increase in response time to the HIs, as 
expected, but response time to the LOs was reduced by 18 ms. Although 
these differences were not statistically significant (likely due to inade
quate statistical power to detect small between-subjects effects), the fact 
that the LOs actually sped up is not predicted by the pure proportion/ 
pure frequency accounts. Moreover, the predicted overall slowing in 
responding with more words was again not evident. 

5. Experiment 3 

We conducted Experiment 3 including all three groups (3-word, 6- 
word, and 12-word) to replicate the previous findings in a single 
experiment. 

5.1. Method 

5.1.1. Participants 
We used the same group-level sample sizes as in Experiment 1. A 

power sensitivity analysis is presented below in the Outlier Removal 
section. During the final academic term of 2018 and the first academic 
term of 2019, a total of 150 University of Waterloo undergraduate stu
dents took part in a single session in exchange for course credit. They 
were randomly assigned to condition, with 50 participants in each of the 
three conditions. All had self-reported normal or corrected-to-normal 

vision. After data trimming, the final sample of 148 participants used 
in our statistical analyses was 76% female, with age ranging from 17 to 
31 (M = 19.51, SD = 2.09). Due to missing or incomplete data for some 
participants, these two demographic figures are based on 137 and 146 
participants, respectively. 

5.1.2. Apparatus 
The apparatus was identical to that of Experiments 1 and 2. 

5.1.3. Materials and design 
The overall materials and design closely matched those of Experi

ment 2.5 The experiment was a 2 (HI vs. LO contingency) x 3 (3 vs. 6 vs. 
12 words) design, with contingency within-subject and number of words 
between-subjects. 

5.1.4. Procedure 
The procedure matched that of Experiment 2 except that we included 

all three levels of the shared associations: 3-word, 6-word, and 12-word. 

5.1.5. Outlier removal 
The data cleaning procedure again followed that in Experiment 1. 

Appendix Table 1 lists the results of all data cleaning steps for each 
experiment and the small amount of data trimmed. Here, data from 148 
of the 150 participants were retained for use in our statistical analyses. A 
power sensitivity analysis using the jpower module for jamovi indicated 
that we were powered to detect between-subjects effect sizes in inde
pendent samples t-tests as small as d = 0.57 (f = .28, ηp

2 = .08) and 
within-subject effect sizes in paired-samples t-tests as small as d = 0.40 
(f = .20, ηp

2 = .04), both with 80% power (α = .05, two-tailed). 

5.2. Results 

The top half of Table 3 displays mean correct response time for HI 
and LO trials for each of the 3-, 6-, and 12-word groups across the first 
150 trials (analyses of the full data set, presented in the Appendix, 
supported the same conclusions as presented here). As before, only 
response times for correct trials were analyzed. A 2 × 3 mixed ANOVA 
was conducted, with Contingency (HI vs. LO) within-subject, Group (3- 
word, 6-word, 12-word) between-subjects, and response time (in ms) 
from the first 150 trials in each group as the dependent measure. 

As previously, the ANOVA revealed a significant main effect of 
Contingency, F(1, 145) = 83.09, p < .001, ηp

2 = .36, BF10 > 100, and a 
non-significant main effect of Group, F(2, 145) = 2.23, p = .105, ηp

2 =

.03, BF01 = 0.95, although the Bayes factor for the latter result provided 
almost equal evidence for the null and alternative hypotheses. Consis
tent with our hypothesis, the Contingency x Group interaction was again 
significant, F(2, 145) = 7.70, p < .001, ηp

2 = .10, BF10 = 34.1, accom
panied by strong Bayesian evidence as well. Welch-corrected 

5 There was one exception: To equate the number of presentations of indi
vidual stimulus combinations across all groups, we chose to vary the overall 
number of trials between groups. Consequently, there were 150, 300, and 600 
trials presented in the 3-word, 6-word, and 12-word conditions, respectively. 
This resulted in an equal number of presentations for each HI or LO color-word 
combination across groups. Note that the ratio of HI:LO:LO trials was still 8:1:1 
in each case. We subsequently decided that, because of the differing number of 
trials across groups, it was important to equate participant fatigue. Therefore, in 
the main text, we restrict our analyses to the first 150 trials of each group in 
Experiments 3 and 4. In the end, analyses based on all trials (see the Appendix) 
led to conclusions highly similar to those presented here, save for three dif
ferences. First, in Experiment 3, the LO vs. LO comparison between the 3-word 
and 12-word groups was significant when based on the first 150 trials but non- 
significant when based on the entire dataset. Second, the HI vs. HI comparison 
across groups in Experiment 4 was non-significant when based on the first 150 
trials but significant when based on the entire dataset. Finally, the opposite was 
true for the LO vs. LO comparison in Experiment 4. 
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independent-samples t-tests6 revealed that the contingency learning 
effect was significantly larger for the 3-word group (46 ms) than for the 
6-word group (22 ms), p = .006, and the 12-word group (18 ms), p =
.001. The latter two groups, however, did not differ significantly, p =
.470. 

We again broke down the Contingency x Group interaction with 
planned comparisons, confirming significant contingency learning ef
fects within each of the three groups: 3-word group, t(145) = 8.41, p <
.001, d = 0.91, BF10 > 100; 6-word group, t(145) = 4.07, p < .001, d =
0.74, BF10 > 100; and 12-word group, t(145) = 3.29, p = .001, d = 0.58, 
BF10 > 100. Further planned comparisons exhibited significantly longer 
latencies for LOs in the 3-word group relative to the 6-word group, t 
(145) = 2.49, p = .014, d = 0.49, BF10 = 2.80, and the 12-word group, t 
(145) = 2.31, p = .022, d = 0.46, BF10 = 2.11, while Bayes factors 
provided only anecdotal evidence for the alternative in each case. 
Response times on LO trials in the latter two groups did not differ, t(145) 
= 0.20, p = .845, d = 0.04, BF01 = 4.64. For the HIs, no group difference 
was statistically significant (ps ≥ .190). 

We hypothesized that the size of the contingency learning effect 
would decline as more words were added in each subsequent condition: 
from 3 to 6 to 12 words. Because we hypothesized a monotonic decline 
in effect size, we conducted a Mann-Kendall trend test (also known as an 
M-K test; Kendall, 1938; Mann, 1945). We used the mk.test() function 
from the trend package for R to test the two-sided alternative that the RT 
effect size (LO - HI RTs) followed a monotonic trend moving from 3 to 6 
to 12 words. Because the M-K test is non-parametric, it makes no as
sumptions based on normality of data, which suits RT data well.7 This 
test revealed that the predicted monotonic decline in RT-based effect 
size was statistically significant, S = − 1597, τ = − 0.15, z = − 2.65, p =
.008 (see Fig. 2). 

5.3. Discussion 

Experiment 3 replicated the patterns observed in Experiments 1 and 
2. As the number of words increased, the magnitude of the contingency 
learning effect decreased in an orderly fashion. The interaction and the 
monotonic decline in performance in this experiment were both clear 
and significant. Consequently, we interpret the findings of this experi
ment as a successful conceptual replication of the previous two experi
ments. We saw a smooth decline in the contingency learning effect as the 
number of irrelevant words increased. There was again no overall 

slowing in responding as more words were added.8 

That LOs became significantly faster as more words were added in the 
6-word and 12-word groups, and that HIs were numerically slowest in 
the 3-word group, stands in opposition to the pure proportion/pure 
frequency accounts, as well as to the PEP 2.0 model, all of which predict 
general slowing of both HI and LO trials as more words are added. 

Critically, according to the pure proportion/pure frequency ac
counts, responses on LO trials should never be expected to get faster as 
more words are added. Instead, these accounts both predict that LO 
responses should become slower—the opposite of what we have 
observed. Alternatively, one might expect LO responses to stay the same 
speed if they were already sufficiently rare that they did not receive 
facilitation they in the 3-word condition. But they should never get 
faster according to these ‘facilitation-only’ accounts. Alternative ac
counts that would predict speeded LO trials would include those that 
posit a role for response interference. Perhaps as HI trials become 
decreasingly prevalent in the trial set they exert less interfering influ
ence on LO trial responses: Bias toward an incorrect, high-contingency 
color response for a given word is reduced when the learned contin
gency is less prevalent in the trial history. 

With evidence in hand for such unpredicted differences in LO vs. LO 
comparisons between groups, we moved forward with a final experi
ment to replicate the most extreme disparity (3-word relative to 12- 
word) with a much greater sample size to achieve adequate power to 
detect potentially small between-group differences if they exist. Our 
goal in Experiment 4 was to confirm that as more words are added, the 
unpredicted decline in the contingency learning effect is in part—if not 
primarily—due to responses on LO trials speeding up rather than re
sponses on HI trials simply slowing down. This pattern runs contrary to 
the predictions of the pure proportion/pure frequency accounts and 
instead is better aligned with the misprediction cost and bidirectional 
cost accounts that both suggest a role for response interference. 

6. Experiment 4 

In Experiments 1–3, the size of the contingency learning effect 
decreased as the number of words on the response-irrelevant dimension 
increased. However, it was not clear whether this reduction was due to 
slowing on HI trials, speeding on LO trials, or both. As noted earlier, the 
pure proportion/pure frequency accounts predict slowing of responding 
for both HI and LO trials as the number of words increases because the 
learned contingencies become diluted among so many unique color- 
word instances. This slowing should be substantial for HI trials, which 
are prevalent in the typical 3-word paradigm, but should also be 
apparent (albeit perhaps smaller) for LO trials which are rare in the 3- 
word paradigm and even rarer in the 12-word condition. 

Of course, determining where the movement is in a between-subjects 
manipulation requires substantially greater statistical power than our 
experiments have had thus far, despite their already relatively large 
sample sizes. Therefore, the goal of Experiment 4 was to replicate 
Experiment 2 with a much greater sample size to provide sufficient 
statistical power to detect potentially small between-subjects move
ments separately for HI and LO trials. We predicted that if indeed 
response interference from HI trials typically is exerted on LO trials in 
the 3-word condition—as the misprediction cost and bidirectional cost 
accounts predict—then the dilution of HI trials in the 12-word condition 
may release LO trials from response interference, causing responses on 
LO trials to speed up. Put simply, if response interference is at play in 
contingency learning, we should see LO trials get faster in the 12-word 
condition; if no response interference is occurring, responses on LO trials 

Table 3 
Experiment 3: response time and error rate.  

Group HI LO CL effect 

Response times 
3-word 561 (73) 607 (92) 46 (51) 
6-word 541 (73) 564 (85) 22 (30) 
12-word 549 (74) 567 (82) 18 (31) 

Error rates 
3-word .018 (.017) .043 (.045) .019 (.036) 
6-word .023 (.020) .042 (.041) .019 (.041) 
12-word .029 (.023) .037 (.035) .007 (.029) 

Note. This table reports mean response times (in ms) and error rates for the first 
150 trials (with standard deviations for each in parentheses) in high-contingency 
(HI) and low-contingency (LO) conditions, as well as the mean contingency- 
learning (CL) effect (low contingency – high contingency) in the three experi
mental groups. 

6 All t-tests used throughout this manuscript were two-tailed with alpha set at 
.05.  

7 We used an M-K test here because we had no hypotheses concerning the 
shape of the trend. However, we conducted a linear regression as well. The 
result of this regression agreed with that of the M-K test, indicating that the size 
of the contingency learning effect was significantly negatively associated with 
Group, R2

adj = .08, F(2, 145) = 7.67, p < .001. 

8 It is worth noting, however, that this experiment was underpowered to 
detect a between-subjects effect smaller than d = 0.57 (see our power sensitivity 
analysis above), so it is possible that there is a small yet significant group dif
ference that we were unable to measure in this particular experiment. 
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should get slower or stay the same in the 12-word condition. 

6.1. Method 

6.1.1. Participants 
An a priori power analysis was conducted using G*Power software 

(v. 3.1.9.7; Faul et al., 2007), aiming for the smallest effect size of in
terest that we could feasibly achieve power for. We chose to target 
Cohen's d = 0.20 for the critical LO vs. LO between-subjects comparison 
(α = .05, two-tailed independent samples t-test) as measured by 
response times. This indicated required sample sizes of 788 or 1054 
participants in total to achieve 80% or 90% statistical power, respec
tively. Accordingly, we aimed to collect a minimum of 788 participants 
in total, with our ideal target sample size set higher at 1054, although 
our stopping rule was based on the end of the final term in which we 
collected data. With the same parameters as listed above, it was also 
possible to detect a small between-subjects main effect (f = .15) of 
Group, which PEP 2.0 would predict based on the notion of overall 
slowing for HI and LO trials. 

From the final academic term of 2020 until the final term of 2021, 
1364 University of Waterloo undergraduate students each took part in a 
single session in exchange for course credit. All had self-reported normal 
or corrected-to-normal vision. The final sample of 1081 participants 
used in our statistical analyses after data trimming was 74% female with 
age ranging from 17 to 48 (M = 20.47, SD = 3.60). Due to missing or 
incomplete data for some participants, sex is based on 961 participants 
and age is based on 933 participants. 

6.1.2. Apparatus 
Unique to this experiment, participants completed the study on their 

own personal computers. We created a custom program that ran in a web 
browser and collected reliable response time data while being very 
similar in appearance to the in-lab versions of the program used in the 
previous experiments. The main experiment program was written pri
marily in Python, which was then converted to JavaScript and run 
locally in the participant's web browser (akin to an ‘applet’ style of 
program that services like PsychoPy offer). We hosted the program 
temporarily on participants' computers to minimize noise in response 
time collection. Data files were then uploaded to a university server after 
the participant had completed the study. 

6.1.3. Materials and design 
Again, participants were randomly assigned to one of two conditions, 

with 743 participants in the 3-word group and 621 in the 12-word 
group. The overall design closely followed that of Experiment 2 except 
that, as in Experiment 3, we chose to equate the number of presentations 
of individual stimulus combinations by varying the overall number of 
trials across conditions (see Footnote 3). 

6.1.4. Procedure 
The procedure was identical to that of Experiment 2, except that the 

experiment was completed online via a web browser on participants' 
own computers in their own space. This change also meant that response 
keys were no longer color-coded with stickers. 

6.1.5. Outlier removal 
The data cleaning procedure again followed that described in 

Experiment 1. Appendix Table 1 lists the results of all data cleaning steps 
for each experiment and the amount of data trimmed. We retained data 
from 1081 of the 1364 participants for our statistical analyses. Based on 
our a priori power analysis, this sample size ensures 90% power to detect 
a between-subjects effect in independent samples t-tests as small as d =
0.20. A power sensitivity analysis using the jpower module for jamovi 
confirmed that we were powered to detect between-subjects effect sizes 
in independent samples t-tests as small as d = 0.20 (f = .10, ηp

2 = .01) and 
within-subject effect sizes in paired-samples t-tests as small as d = 0.13 

(f = .07, ηp
2 = .004), both with 90 % power (α = .05, two-tailed). 

As is shown in Appendix Table 1, most of the participant data 
removed here occurred during the second step of our standard data 
cleaning procedure—the step when data from participants with <80% 
accuracy across all trials were removed. The loss of data at this step is 
likely due to participants being more distracted than would be the case 
in the controlled environment of a laboratory. It is also possible that the 
absence of colored stickers on the keys, in contrast to previous experi
ments, was partly to blame for the higher error rate seen here. 

6.2. Results 

As in Experiment 3, we once again restricted all analyses to the first 
150 trials in each group to mitigate any variance attributed to partici
pant fatigue (see Footnote 3). The top half of Table 4 displays mean 
correct response times for HI and LO trials for the 3-word and the 12- 
word groups. Once again, only correct trials were analyzed. A 2 × 2 
mixed ANOVA was conducted, with Contingency (HI vs. LO) within- 
subject, Group (3-word vs. 12-word) between-subjects, and response 
time (in ms) as the dependent measure. There was a significant main 
effect of Contingency, F(1, 1079) = 373.04, p < .001, ηp

2 = .26, BF10 >

100, indicative of a robust overall contingency learning effect. The main 
effect of Group was again non-significant, F(1, 1079) = 1.66, p = .198, 
ηp

2 < .01, BF01 = 3.35, with moderate Bayesian evidence for the null 
model. As in our prior experiments, the Contingency x Group interaction 
was significant, F(1, 1079) = 110.14, p < .001, ηp

2 = .09, BF10 > 100, 
demonstrating that the contingency learning effect was larger in the 3- 
word group (43 ms) than in the 12-word group (13 ms). Even with the 
change to an online setting, these means are very similar to those in 
Experiments 2 and 3. Planned comparisons confirmed significant con
tingency learning effects both in the 3-word group, t(1079) = 22.37, p <
.001, d = 0.81, BF10 > 100, and in the 12-word group, t(1079) = 5.91, p 
< .001, d = 0.33, BF10 > 100. 

The goal of this final experiment was to break down the significant 
Contingency x Group interaction to determine whether the reduction in 
contingency learning effect size is driven by a between-groups difference 
in the HIs, in the LOs, or in both. A planned comparison demonstrated 
that responses to HIs were non-significantly but numerically slower as 
more associations were added (i.e., in the 12-word group relative to the 
3-word group; see Table 4), t(1079) = 1.84, p = .067, d = 0.11, BF01 =

2.77, although the Bayes factor only provided anecdotal evidence for the 
null model. Critically, and in contrast to the prediction from the pure 
proportion/pure frequency accounts, however, responses on LO trials 
were significantly faster in the 12-word group relative to the 3-word 
group, t(1079) = 3.73, p < .001, d = 0.23, BF10 = 62.6 (see Fig. 3), 
accompanied by very strong Bayesian evidence for this finding. 

6.3. Discussion 

Experiment 4 demonstrated that the attenuation of contingency 
learning with an increased number of response-irrelevant stimuli is 

Table 4 
Experiment 4: response time and error rate.  

Group HI LO CL effect 

Response times 
3-word 574 (74) 617 (101) 43 (54) 
12-word 583 (81) 596 (90) 13 (38) 

Error rates 
3-word .039 (.029) .068 (.059) .028 (.054) 
12-word .046 (.045) .052 (.051) .005 (.045) 

Note. This table reports mean response times (in ms) and error rates for the first 
150 trials (with standard deviations for each in parentheses) in high-contingency 
(HI) and low-contingency (LO) conditions, as well as the mean contingency- 
learning (CL) effect (low contingency – high contingency) in the two experi
mental groups. 
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highly reliable. These results were, however, at odds with predictions 
made by the pure proportion/pure frequency accounts, and by exten
sion, by PEP 2.0 as well: the contingency learning effect should have 
stayed the same size as the number of stimuli on the response-irrelevant 
dimension increased, given that the contingency proportions and rela
tive frequencies of HI and LO trails were constant. However, as we had 
noticed across Experiments 1–3, the results of Experiment 4 demonstrate 
that whereas HI responses became 9 ms slower as the number of 
response-irrelevant stimuli quadrupled between groups, LO responses 
became significantly faster by 22 ms. As a result, we again observed no 
overall slowing across groups, contrary to the prediction of facilitation- 
only explanations. Despite the first three experiments presented here 
being underpowered to detect small differences between groups, this 
final experiment, which could reliably measure main effects as small as f 
= .15, still did not find a significant main effect of Group (i.e.., overall 
slowing of HIs and LOs). Critically, that we observed significant 
speeding of LO responses as more words were added is consistent with 
the possibility of response interference influencing color-word contin
gency learning. 

7. General discussion 

Across four experiments, as an increasing number of words ‘shared’ 
contingencies with the same color, the learning of the color-word 
associations—the contingency learning effect—was progressively 
attenuated (see Fig. 2). We consistently replicated the prototypical 
contingency learning effect using a standard 3-word paradigm, where 
each word was most often presented (80% of the time) in a single color 
(one word per HI contingency). Further, we extended this to 6-word (2 
words per HI contingency) and 12-word (4 words per HI contingency) 
versions. In so doing, we observed a systematic decline in the magnitude 
of the contingency learning effect as the number of connected words 
increased. This study represents the largest investigation of contingency 
learning to date with a total of 1490 participants retained for statistical 
analyses. Notably, Experiment 4, the basis of our critical conclusions, 
stands as the largest single contingency learning experiment yet con
ducted, featuring over 1000 participants. 

Although other studies have investigated the effects of altering the 
contingency ratio (e.g., Forrin & MacLeod, 2018), we instead opted to 
maintain a consistent 8:1:1 ratio for HI:LO:LO color-word combinations. 
Without changing this contingency proportion, we systematically varied 
the number of words connected to a given color (e.g., in the 6-word 
group: both mouth in red; 8:1:1, and under in red; 8:1:1). Critically, 

this permitted the addition of more HI contingency combinations 
without reducing the overall proportion of LO trials (unlike what hap
pens when the contingency ratio is altered). We now consider this 
consistent pattern of findings with reference to the five main accounts 
discussed at the outset of this article. 

7.1. Facilitation-only versus interference-based accounts 

At the beginning of this article, we summarized four main accounts 
that Schmidt and De Houwer (2016) had put forth as potential expla
nations for costs and benefits in the contingency learning effect. By way 
of reminder, they are: (1) prediction benefit, (2) misprediction cost, (3) 
bidirectional cost, and (4) pure proportion. Later, we summarized a fifth 
account that shares many qualities with the pure proportion 
account—the pure frequency account. It is important to recognize that 
whereas the prediction benefit, pure proportion, and pure frequency 
accounts suggest that contingency learning is entirely facilitative, the 
misprediction cost and bidirectional cost accounts instead posit a role 
for response interference (i.e., expectations that are set out by experi
ence with HIs make all other response options slower). 

Critically, proponents of facilitation-based accounts should only ever 
predict faster performance for LOs under two highly similar scenarios: 
(1) LOs share a higher proportion of all trials such that there are pro
portionately more matching instances in memory to point at the current 
trial, or (2) LOs become more frequent in terms of their raw trial count 
such that, again, more matching instances in memory point at the cur
rent trial. Neither of these scenarios was true in our study. Instead, the 
number of unique items presented to participants was manipulated 
without changing the overall contingency ratios and without increasing 
the frequency of particular instances. This alteration actually decreased 
the frequency of any given HI or LO item, since there were more unique 
combinations to encode. These changes should have caused responses 
on LO trials either to stay the same (according to the pure proportion 
account) or to become slower (according to the pure frequency account). 

Our findings implicate an additional factor at play in contingency 
learning, beyond any effects of biased facilitation. In the face of 
decreased frequency and stable contingency proportion, the only way 
that a response to a LO trial can get faster is if it is no longer being ‘held 
back’ by interference from HI trials. Of the five accounts presented by 
Schmidt and De Houwer (2016), only the misprediction and bidirec
tional cost accounts posit roles for response interference. Therefore, we 
put those two accounts forward as the best fit for the present findings. 
Next, we consider what the inclusion of response interference would 

Fig. 3. Mean response times in all four experiments, split by HI and LO trials. 
Note. Error bars = ± 1 SE. 

B.R.T. Roberts et al.                                                                                                                                                                                                                            



Acta Psychologica 244 (2024) 104187

10

mean for PEP. 

7.2. Implications for the PEP 2.0 model of contingency learning 

Recall that PEP 2.0 is a computational model of stimulus-response 
bindings that implements the principles of instance theories to explain 
performance changes in a variety of cognitive phenomena (contingency 
learning, Stroop, stimulus-response bindings effects, mixing costs, etc.). 
It argues two basic premises: (1) each individual event is encoded and 
stored as a separate episode in memory, and (2) during subsequent 
events, stored episodes are retrieved simultaneously to aid performance 
by biasing response selection. Since in contingency learning there are 
many more HI episodes in memory, retrieval is biased toward a large 
facilitative response on HI trials and a small facilitative response on LO 
trials. 

The PEP 2.0 model most closely resembles a ‘pure proportion’ ac
count, and consequently, would predict a main effect of Group but no 
interaction in our experiments: Overall performance should get slower 
as more words are added to the set (i.e., due to diminished facilitation 
for all trials as a result of their increased scarcity) but the size of the 
effect should remain the same. That we observed precisely the opposite 
pattern of results across four experiments (an absent main effect of 
Group and a significant interaction) certainly contradicts the model's 
predictions. Of course, this lack of a main effect of word set size may be 
at least partially explained by the LOs actually getting faster while the 
HIs got predictably slower, effectively cancelling each other out (see, for 
example, Experiment 4 represented in Fig. 3). Together, these two 
changes—HIs slowing down (or holding stable) and LOs speeding 
up—resulted in an overall reduction in the contingency learning effect. 
That a substantial portion of this change stemmed from the LO trials 
becoming faster with increased number of associations runs counter to 
the PEP 2.0 model: The model would never predict facilitation of per
formance for HI or LO trials when episodes are ‘watered down’ with 
more color-word combinations. 

Accounts incorporating response interference are consistent with a 
previous claim (Lin & MacLeod, 2018) that the contingency learning 
effect is made up of both benefits for HI trials and costs for LO trials. As 
additional evidence for this claim, consider that if LOs are typically 
slowed by interference from HIs, it stands to reason that the HI associ
ations need to be learned first, before they can exert any response 
interference on LOs. Indeed, previous work (Lin & MacLeod, 2018) has 
already found support for this notion: The benefit for HI trials is quickly 
realized whereas the cost to LOs takes longer to appear. 

In summary, we reason that the size of the contingency learning ef
fect decreased in our experiments because of two related occurrences: 
HIs slowed down—due to decreased facilitation—and LOs sped up—due 
to decreased interference exerted by those HIs. Contingent on the pro
portion of stored episodes, one may observe varying degrees of response 
facilitation. PEP 2.0 handles this well. Arguably, these stored episodes 
can, however, also prime individuals for a response, necessitating 
additional work to overcome this interference so as to make the correct 
response. As a result, response interference should be considered as a 
component mechanism in the next iteration of the PEP model. In fact, 
facilitation and interference need not be mutually exclusive ideas: Re
sponses to HIs may be facilitated due to the increased number of in
stances in memory, as PEP 2.0 would predict, whereas LOs may not only 
lack facilitation due to there being few instances in memory (in accor
dance with the PEP model), but they may also suffer additional inter
ference from HIs (in accordance with response interference). 

7.3. Limitations 

While our interpretation of the data thus far has centered on theory- 
relevant mechanisms of facilitation and interference, it remains possible 
that an unintended group dynamic is in play. For instance, the 12-word 
version of the task, with its considerably higher variety of unique trials, 

is perhaps more engaging to participants.9 This could have reduced 
response times for both HI and LO trial-types. Simultaneously, a 
facilitation-only hypothesis would predict that the benefit for HI trials 
would be reduced due to their increased scarcity, leading to slower 
response times that offset the benefit derived from increased focus. In 
the end, such a pattern of results would be similar to what we found 
here: LO trials would become faster while HI trials would remain rela
tively stable. While plausible, this ‘increased engagement’ explanation is 
unlikely because the task is held constant between groups; participants 
must respond to the color of the word regardless of how many unique 
color-word combinations are presented. 

Some have argued that in the color-word contingency learning 
paradigm, the response-irrelevant word is mapped to a response key 
rather than to the response-relevant dimension (i.e., the font color), and 
thus initial processing of a word may facilitate the correct key response 
even before the color is identified (Schmidt et al., 2007). This change in 
the locus of association binding however, is inconsequential to our 
findings. In either case, the critical factor is that performance is facili
tated for HI trials and that built up ‘expectations’, whether about the 
color or the associated keypress, then slow responses on LO trials—a 
form of interference. 

Perhaps more importantly, it is worth acknowledging that our crit
ical results were statistically significant but relatively small: the LO vs. 
LO comparison to yielded a small effect size of d = 0.23 in Experiment 4. 
In addition, while this LO vs. LO difference was numerically present in 
all four experiments, it only emerged as statistically significant when our 
sample size exceeded 1000, and in a design featuring an extreme 
disparity between 3- and 12-word conditions. This may be more a 
consequence of the high statistical power required for detecting small 
between-subjects effects, and therefore it may be possible to observe the 
effect of speeded LO responses in clever within-subject designs with 
fewer participants. Therefore, while response interference may not play 
a large role in simple association learning, it is nevertheless a factor that 
must be considered because it can account for detectable variance in 
contingency learning. 

8. Conclusion 

This study is the first to demonstrate the effect of associating multiple 
items on a response-irrelevant dimension (words) to a single response- 
relevant dimension (color) in contingency learning. Across four exper
iments, adding more words as highly contingent with a given color 
systematically reduced the contingency learning effect, contrary to 
predictions by the PEP 2.0 model (Schmidt et al., 2016) and related 
facilitation-only models. Increasing the number of specific color-word 
instances ‘waters down’ encoded episodes, diminishing the likelihood 
that matching instances are in recent memory, and ultimately 
decreasing the influence that prior learning has on the current trial. This 
leads to slower responding for high-contingency associations because 
the benefit of facilitation is diminished. We have suggested that this also 
leads to faster responding to low-contingency associations that now 
suffer reduced response interference from diminished expectations 
stemming from high-contingency trial episodes. Incorporation in PEP 
2.0 of an additional mechanism—interference imposed on LOs caused 
by HIs—provides one way to capture the currently unpredicted speeding 
of low-contingency episodes. At the same time, this would account for 
overall responding not slowing down as the number of response- 
irrelevant instances increases. We argue that potential contributions 
from response interference should be considered not only in the con
tingency learning paradigm, but also in related studies examining 
learning of probabilities and simple associations. 

9 We thank Reviewer 1 for this suggestion. 
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